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Practical problem: ditferent types of examples seen in
deployment than in development of classifier
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Practical problem: ditferent types of examples seen in
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Practical problem cases

Unfamiliar test:
0-17 and 60+ yrs old

Training: 18-59 yrs old

Error among

99% confident: 0.5% 6.0%
B driver dies in first fatal crash while
using autopilot mode

The autopilot sensors on || failed to distinguish a white
tractor-trailer crossing the highway against a bright sky




How well do deep network classifiers perform on
unfamiliar samples?
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* Birds, mammals, fishes, and herptiles from ImageNet.
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with irrelevant
Images
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Classification
Animal®
Classification

Fam|I|ar (some speues)

* Birds, mammals, fishes, and herptiles from ImageNet.
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* Birds, mammals, fishes, and herptiles from ImageNet.



Investigated methods

« Ensembles (cf. [1]) Familiar data
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[1] Lakshminarayanan, Balaji, et al. "Simple and scalable predictive uncertainty estimation using deep ensembles." NIPS 2017.



Investigated methods

Familiar data

* Calibration X X
- Temperature scaling [2] X o
O
p(x) = softmax(f(x)/T) X . X))(( X 0 o
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in evaluation

- Calibrate the temperature
In a validation set
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[2] Guo, Chuan, et al. "On Calibration of Modern Neural Networks."



Investigated methods

* Approximate Bayesian methods



Criteria

* Error
- Cross-entropy (NLL)

e Overconfidence

- Cross-entropy minus entropy
- Positive means entropy too small

error (cross-entropy) overconfidence



Results (animal classification dataset)
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Results (animal classification dataset)
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Results (animal classification dataset)
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Results (all datasets
Gender Classification Cat vs. Dog Classification
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Take-away

We highlight the issue:
 Data underrepresented in training can get confidently misclassified

We propose an experimental methodology to study the issue:
 Familiar / unfamiliar data splits
* Several useful metrics }’5"

ked

= 84 5% female

We find best-performing methods:
* Calibration (T-scaling)
 Calibrated ensembles

=99 3% male
= 53.7% male



