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Joint Training vs. LwF (ours)
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« Qutperforms the widely-used fine-tuning on both
original and new task.

« Outperforms feature extraction on the new task.

« Simple to implement and deploy Datasets

* Training efficiency compared to joint training
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: - * Validation set results shown. Test set results similar
Expe” ment Settin gs *VGG-16 network results are mostly similar,
however Joint Training outperforms our method

more on both tasks (0.8%~2.5%)
old task + new task

PASCAL VOC 2012
ImageNet 2012* | 4 | Caltech-UCSD Birds

Method random initialize + train Places2* MIT indoor scenes Multiple new task scenario
fine-tune MNIST . .
Outline frozen (original) old J The new dataset Is split into three parts.
* Pre-trained AlexNet obtained from authors 1d + ewl Record Y,; again each time.

1. Obtain old task responses ,‘
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. » Training: forward-pass shared parameters once. Old + newl + new2 + news —*— LwF (ours)

—[old task m response Y,,,,] Faster than joint training, similar to fine-tuning

« Test: same as compared methods; more efficient
than keeping different networks for each task
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2. Train on new images
Design choices and alternatives

Target:

We experimented with some variations:
* Possibly: more layers as task-specific parameters.
* Possibly: add nodes to earlier layers

[old task 1 response Y]
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* Possibly: just reduce fine-tuning learning rate - & | | | = | | |
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inconsistent improvements, if any. (a) Places2—VOC (b) ImageNet—Scenes

Training: loss

shared/old/new old task response
parameters n  preservation loss Conclusions
0%, 0, 0 < argmin Loa(Ye, Yy 0,.0
§2 Tor Tm ésgéo . ZZ: otd (Yo, Yo: 05, 0o) * Vs. Feature Extraction: LwF outperforms on new task; underperforms on old task
o o * Vs. Fine-tuning: _LWF outperforms on both tasks, as keeping old responses regularizes model
+ Lypew(Yn, Yn;0s,0,) +R(0s,0,,0,) « Vs. Joint Training: _wF performs nearly as well as joint training

* Dissimilar new tasks degrade old task performance
« Similar results and same observations for adding multiple new tasks

new task

D regularization
classification loss
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