Learning Without Forgetting

Zhizhong Li, Derek Hoiem {zli115,dhoiem}@lllinois.edu Department of Computer Science, University of Illinois at Urbana-Champaign

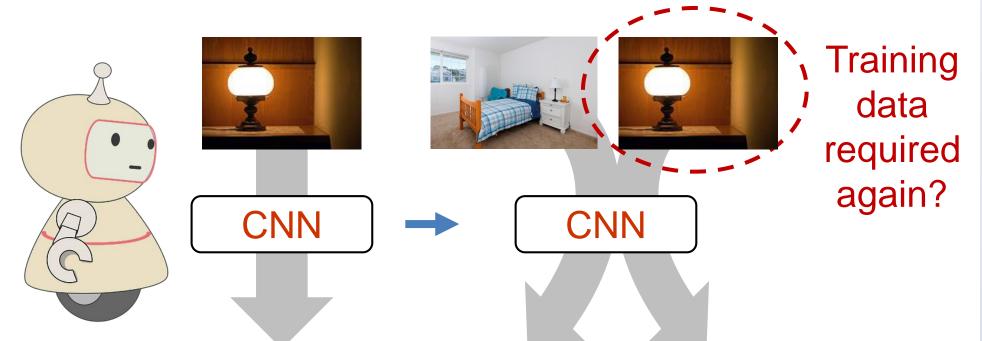
http://zli115.web.engr.illinois.edu/learning-without-forgetting/

I L L I N O I S

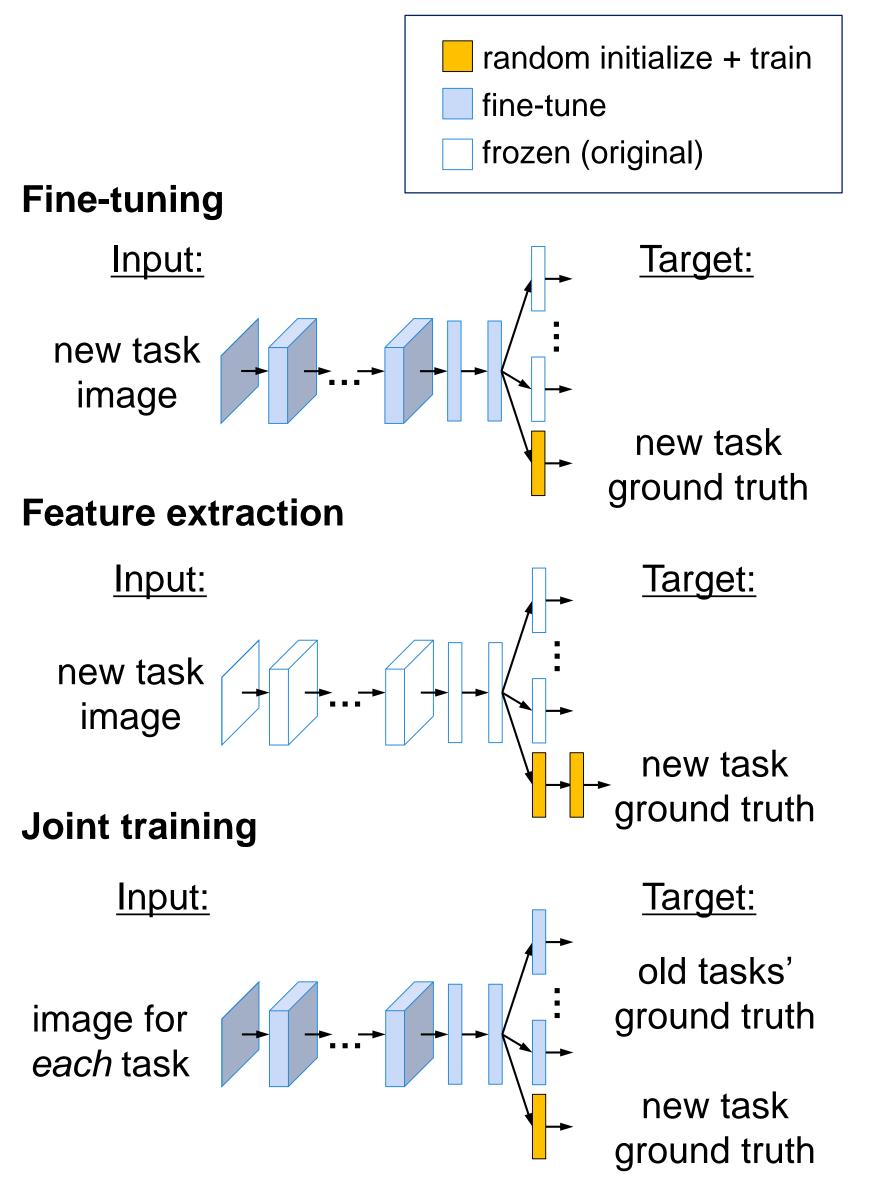
Motivation

When expanding the capability of a vision system...

- Fine-tuning? (old task suffers)
- Feature extraction? (new task suffers)
- Joint training:



Compared methods



Results Single new task scenario 1 old 1 old + 1 new Feature Extraction Fine-tuning Joint Training LwF (ours)

* Accuracy (average precision for VOC)* Using AlexNet

old

Feature Extraction vs. LwF (ours) Places2 Places2 Places2 ImgNet \rightarrow VOC ImgNet \rightarrow Scenes \rightarrow MNIST $4^{5} \downarrow 4^{5} \downarrow 4^{5} \downarrow 4^{5} \downarrow 4^{5} \downarrow 4^{5} \downarrow 5^{5} \downarrow 5^{6} \downarrow 5^{5} \downarrow 5^{6} \downarrow 5^{6}$

item:	scene:	item:
"lamp"	"bedroom"	"lamp"

What if the original dataset...

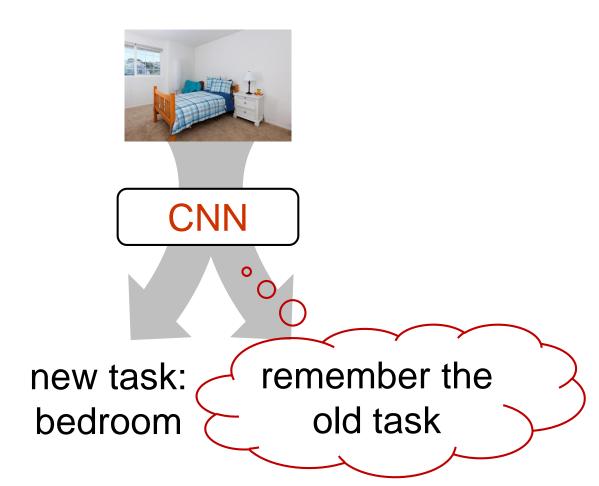
- Is not recorded?
- Is proprietary?
- Is too cumbersome?

But we want...

- Benefit of shared representation
- No or little degradation of the original capability
- Without the need to access original task dataset?

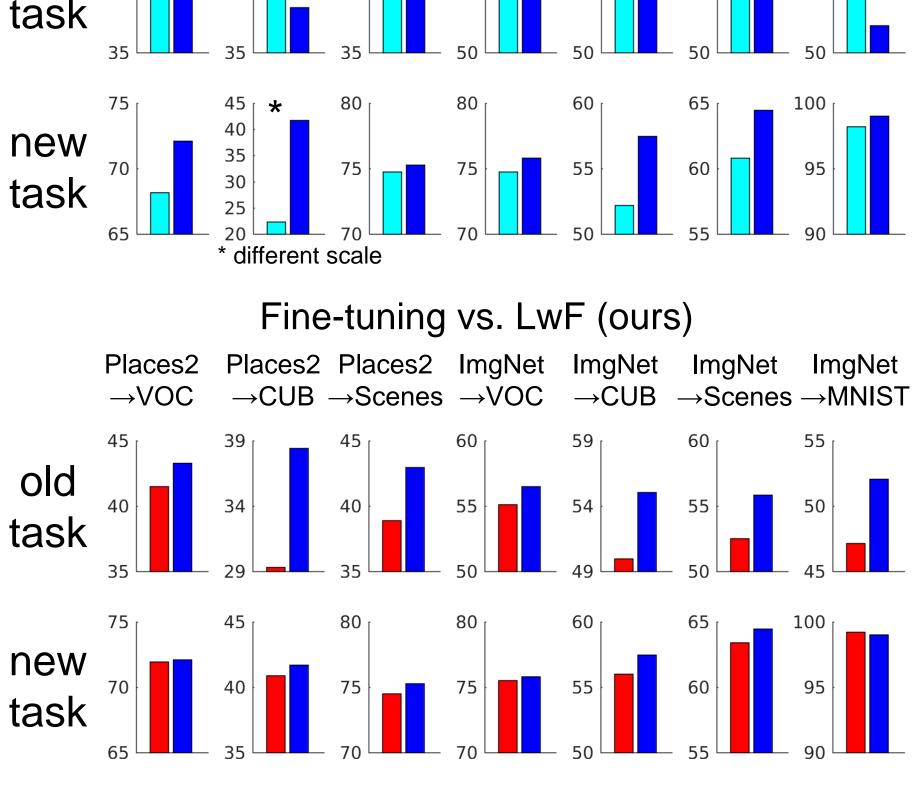
Goal:

Add new capabilities to a CNN-based vision system using only data from the new task.



Limitations of existing methods

	Fine Tuning	Duplicating and Fine Tuning	Feature Extraction	Joint Training	Learning without Forgetting
new task performance	good	good	X medium	best	√ best
original task performance	X bad	good	good	good	√ good
training efficiency	fast	fast	fast	X slow	√ fast
testing efficiency	fast	X slow	fast	fast	√ fast
storage requirement	medium	X large	medium	X large	√ medium
requires old task data	no	no	no	X yes	√ no



Our strengths:

Method

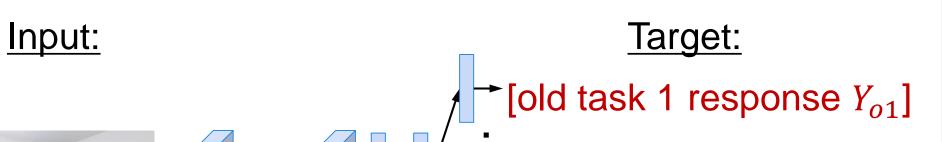
- Outperforms the widely-used fine-tuning on *both original and new task*.
- Outperforms feature extraction on the new task.
- Simple to implement and deploy
- Training efficiency compared to joint training

Outline fine-tune frozen (original)

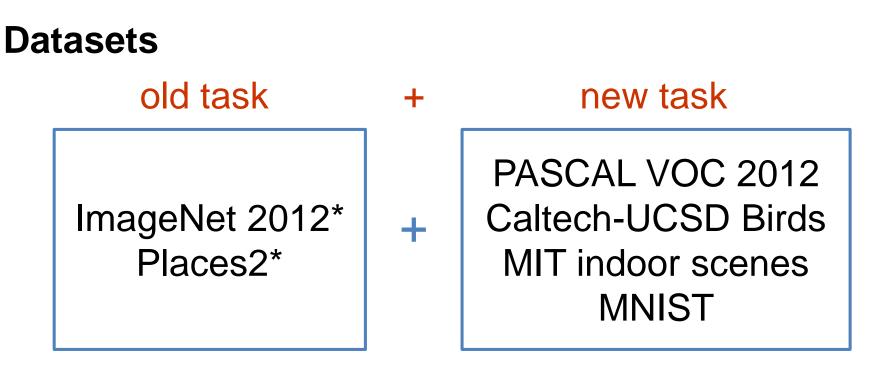
1. Obtain old task responses

[new image] shared parameters $[old task 1 response Y_{o1}]$ $[old task m response Y_{om}]$

2. Train on new images



Experiment Settings



* Pre-trained AlexNet obtained from authors

Efficiency:

- Training: forward-pass shared parameters once. Faster than joint training, similar to fine-tuning
- Test: same as compared methods; more efficient than keeping different networks for each task

Design choices and alternatives

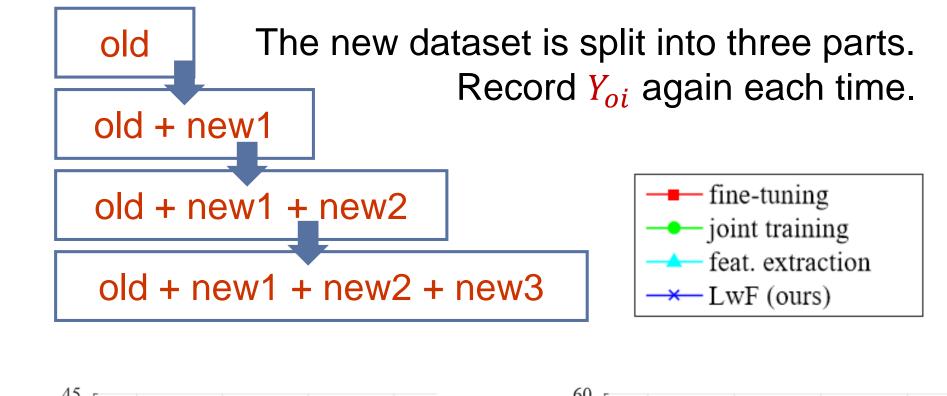
We experimented with some variations:

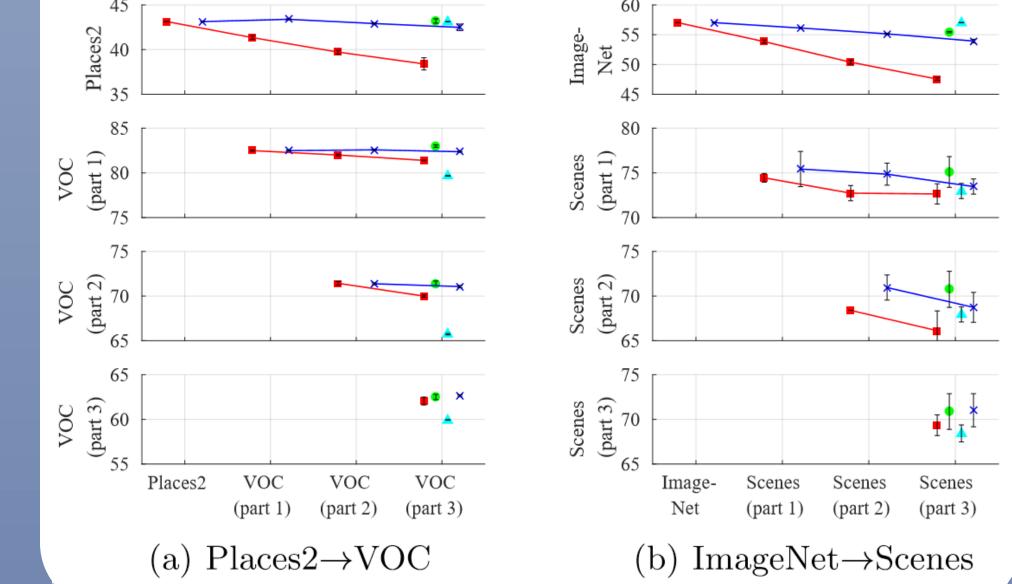
• Possibly: more layers as task-specific parameters.

task 35 70 70 50 55 90 90

* Validation set results shown. Test set results similar
* VGG-16 network results are mostly similar, however Joint Training outperforms our method more on both tasks (0.8%~2.5%)

Multiple new task scenario





[new image]

 \rightarrow new task ground truth Y_n

 \rightarrow [old task *m* response Y_{om}]

random initialize + train

Training: loss

 $\begin{array}{ll} \text{shared/old/new} & \text{old task response} \\ \text{parameters} & & \text{preservation loss} \\ \theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \operatorname*{argmin}_{\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n} \left(\sum_{i}^m \mathcal{L}_{old}(Y_o, \hat{Y}_o; \hat{\theta}_s, \hat{\theta}_o) \\ & + \mathcal{L}_{new}(Y_n, \hat{Y}_n; \hat{\theta}_s, \hat{\theta}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right) \\ & & \text{new task} \\ & \text{classification loss} \end{array} \right)$

- Possibly: add nodes to earlier layers
- Possibly: use alternative loss for $\mathcal{L}_{old}(Y_o, \hat{Y}_o)$
- Possibly: just reduce fine-tuning learning rate These variations provided insignificant or inconsistent improvements, if any.

Conclusions

- Vs. Feature Extraction: LwF outperforms on new task; underperforms on old task
- Vs. Fine-tuning: LwF outperforms on both tasks, as keeping old responses regularizes model
- Vs. Joint Training: LwF performs nearly as well as joint training
- Dissimilar new tasks degrade old task performance
- Similar results and same observations for adding multiple new tasks

Acknowledgments This material is based upon work supported in part by NSF Awards 14-46765 and 10-53768 and ONR MURI N000014-16-1-2007.